第(3/3)页 参赛的268名选手在这道题目上的平均得分只有0.6分。 在比赛场内的四位数论专家短时间内都做不出来。 他觉得陆晓也应该不会做,要是会做的话,肯定以前接触过。 他写完后询问道:“做过吗?” 陆晓老实的摇摇头。 随后开始阅题,【正整数a与b使得ab+1整除a2+b2,求证:(a2+b2)/(ab+1)是某个正整数的平方。】 【模拟中,模拟成功,耗时3s,解题过程:....根据(1),a2必为整数; 根据(2),a2不可能为0; 由于a1≥b1,因此a2必定小于a1 但由于a1已经是方程的最小解了,a2不应该小于a1,因为这和我们说a1+b1是方程解的和的最小值,因此两者相矛盾…… 因而最终我们可以证明,(a2+b2)/(ab+1)是某个正整数的平方。】 在模拟器结果里,这道题给出了好几种解法。 陆晓为了直接通关,继续写起来。 其实运用的知识点依旧是高中知识,只不过非常巧妙。 结合了“韦达跳跃”的概念。 除了“韦达跳跃”,还涉及了“无穷递降法”,同样也是高中知识。 这个方法最先由大数学家费马使用。 他据此证明了x的四次方+y的四次方=z的四次方没有正整数解,也就是费马大定理中n=4的情况。 欧拉也用无穷递降法证明过,每个除4后余数为1的质数都可以表达为两个平方之和。 值得一提的是,这定理也是由费马最先提出的,虽然他没有提出证明。 既然是高中知识点的知识,那就在模拟器能够完美模拟的范围内。 陆晓干脆间接证明了一下。 他发现稿子都完全不够用了。 数学老师连忙拿出一大叠稿子给陆晓写证明过程。 他能看出,陆晓以前真没有接触过这道题,证明过程里,还推导出了其他证明,这简直就是数学家才干的事! 现在,陆晓已经是这个级别了吗? 联想到陆晓之前证明他拿出的那道题,只是几秒钟就得出答案。 这种表现,和历史上的拉马努金有点像。 拉马努金就是大脑直接给出答案,根本不用计算过程,这是一种特殊天赋。 刘勇有个大胆的想法! 要是把千禧年七大问题之一的题目,放到陆晓面前。 他不会把这种难度的题也给证明了吧! 第(3/3)页